You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on E. Coli Metabolome Database.
Identification
ECMDB IDECMDB04085
NameInosinic acid
DescriptionInosinic acid is a purine nucleotide which has hypoxanthine as the base and one phosphate group esterified to the sugar moiety. It is formed by the deamination of AMP and when hydrolysed produces inosine. Inosinic acid is the ribonucleotide of hypoxanthine and is the first compound formed during the synthesis of purine. (Wikipedia)
Structure
Thumb
Synonyms
  • 5'-IMP
  • 5'-Inosinate
  • 5'-Inosine monophosphate
  • 5'-Inosinic acid
  • IMP
  • Inosinate
  • Inosine 5'-monophosphate
  • Inosine 5'-phosphate
  • Inosine Monophosphate
  • Inosine-5'-monophosphate
  • Inosine-5'-phosphate
  • Inosinic acid
  • Ribosylhypoxanthine monophosphate
CAS number131-99-7
WeightAverage: 348.206
Monoisotopic: 348.047099924
InChI KeyInChIKey=GRSZFWQUAKGDAV-KQYNXXCUSA-N
InChIInChI=1S/C10H13N4O8P/c15-6-4(1-21-23(18,19)20)22-10(7(6)16)14-3-13-5-8(14)11-2-12-9(5)17/h2-4,6-7,10,15-16H,1H2,(H,11,12,17)(H2,18,19,20)/t4-,6-,7-,10-/m1/s1
IUPAC Name{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(6-hydroxy-9H-purin-9-yl)oxolan-2-yl]methoxy}phosphonic acid
Traditional IUPAC Name[(2R,3S,4R,5R)-3,4-dihydroxy-5-(6-hydroxypurin-9-yl)oxolan-2-yl]methoxyphosphonic acid
Chemical FormulaC10H13N4O8P
SMILES[H][C@]1(COP(O)(O)=O)O[C@@]([H])(N2C=NC3=C2N=CN=C3O)[C@]([H])(O)[C@]1([H])O
Chemical Taxonomy
KingdomOrganic Compounds
Super ClassNucleosides, Nucleotides, and Analogues
ClassPurine Nucleotides
Sub ClassPurine Ribonucleotides
Other Descriptors
  • Aromatic Heteropolycyclic Compounds
  • purine ribonucleoside 5'-monophosphate(ChEBI)
  • inosine phosphate(ChEBI)
Substituents
  • Aromatic Heteropolycyclic Compounds
  • purine ribonucleoside 5'-monophosphate(ChEBI)
  • inosine phosphate(ChEBI)
Physical Properties
StateSolid
Charge0
Melting pointNot Available
Experimental Properties
PropertyValueReference
Water SolubilityNot AvailablePhysProp
LogP-2.824PhysProp
Predicted Properties
PropertyValueSource
Water Solubility3.6ALOGPS
logP-2.1ALOGPS
logP-3.3ChemAxon
logS-2ALOGPS
Hydrogen Acceptor Count10ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area180.28 Å2ChemAxon
Rotatable Bond Count4ChemAxon
Refractivity71.35 m3·mol-1ChemAxon
Polarizability29.25 Å3ChemAxon
Biological Properties
Cellular Locations
  • Cytosol
  • Extra-organism
  • Periplasm
Pathways
Ecocyc Pathways
  • adenine and adenosine salvage III PWY-6609
  • adenine and adenosine salvage V PWY-6611
  • adenosine nucleotides de novo biosynthesis PWY-6126
  • guanosine nucleotides de novo biosynthesis PWY-6125
  • inosine-5'-phosphate biosynthesis I PWY-6123
Concentrations
Concentrations
ConcentrationStrainMediaGrowth StatusGrowth SystemTemperatureCitationComment
113 ± 0 uM
452000 molecules per cell
BW2511348 mM Na2HPO4, 22 mM KH2PO4, 10 mM NaCl, 45 mM (NH4)2SO4, supplemented with 1 mM MgSO4, 1 mg/l thiamine·HCl, 5.6 mg/l CaCl2, 8 mg/l FeCl3, 1 mg/l MnCl2·4H2O, 1.7 mg/l ZnCl2, 0.43 mg/l CuCl2·2H2O, 0.6 mg/l CoCl2·2H2O and 0.6 mg/l Na2MoO4·2H2O. 4 g/L GlucoStationary Phase, glucose limitedBioreactor, pH controlled, O2 and CO2 controlled, dilution rate: 0.2/h37 oC17379776 Not Available
272 ± 0 uM
1088000 molecules per cell
K12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L glucoseMid-Log PhaseShake flask and filter culture37 oC19561621 Not Available
Details describing the conversion of literature concentrations can be found here.
Spectra
SpectraGC-MSMS/MSLC-MS1D NMR2D NMR
References
References:
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590.21097882
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114.22080510
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25.17765195
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948.18331064
  • Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., Rabinowitz, J. D. (2009). "Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli." Nat Chem Biol 5:593-599.19561621
  • Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., Kanai, A., Hirasawa, T., Naba, M., Hirai, K., Hoque, A., Ho, P. Y., Kakazu, Y., Sugawara, K., Igarashi, S., Harada, S., Masuda, T., Sugiyama, N., Togashi, T., Hasegawa, M., Takai, Y., Yugi, K., Arakawa, K., Iwata, N., Toya, Y., Nakayama, Y., Nishioka, T., Shimizu, K., Mori, H., Tomita, M. (2007). "Multiple high-throughput analyses monitor the response of E. coli to perturbations." Science 316:593-597.17379776
Synthesis Reference:Park, Yeong Hun; Cho, Gwang Myeong; Baek, Min Ji; Hong, Guk Gi; Lee, Jin Nam. Method for preparing 5'-inosinic acid by using microbe capable of over-expressing purC gene. Repub. Korea (2007), 7pp.
External Links:
ResourceLink
CHEBI ID:17202
HMDB ID:HMDB00175
Pubchem Compound ID:8582
Kegg ID:C00130
ChemSpider ID:8264
Wikipedia:Inosinic acid
BioCyc ID:IMP
EcoCyc ID:IMP
Ligand Expo:IMP

Enzymes

General function:
Involved in hydrolase activity
Specific function:
Degradation of external UDP-glucose to uridine monophosphate and glucose-1-phosphate, which can then be used by the cell
Gene Name:
ushA
Uniprot ID:
P07024
Molecular weight:
60823.6
Reactions
UDP-sugar + H(2)O = UMP + alpha-D-aldose 1-phosphate.
A 5'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
General function:
Involved in adenylosuccinate synthase activity
Specific function:
Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first commited step in the biosynthesis of AMP from IMP
Gene Name:
purA
Uniprot ID:
P0A7D4
Molecular weight:
47344.6
Reactions
GTP + IMP + L-aspartate = GDP + phosphate + N(6)-(1,2-dicarboxyethyl)-AMP.
General function:
Involved in hydrolase activity
Specific function:
Nucleotidase with a broad substrate specificity as it can dephosphorylate various ribo- and deoxyribonucleoside 5'- monophosphates and ribonucleoside 3'-monophosphates with highest affinity to 3'-AMP. Also hydrolyzes polyphosphate (exopolyphosphatase activity) with the preference for short-chain- length substrates (P20-25). Might be involved in the regulation of dNTP and NTP pools, and in the turnover of 3'-mononucleotides produced by numerous intracellular RNases (T1, T2, and F) during the degradation of various RNAs. Also plays a significant physiological role in stress-response and is required for the survival of E.coli in stationary growth phase
Gene Name:
surE
Uniprot ID:
P0A840
Molecular weight:
26900.2
Reactions
A 5'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
A 3'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
(Polyphosphate)(n) + H(2)O = (polyphosphate)(n-1) + phosphate.
General function:
Involved in catalytic activity
Specific function:
Nucleotidase that shows high phosphatase activity toward three nucleoside 5'-monophosphates, UMP, dUMP, and dTMP, and very low activity against TDP, IMP, UDP, GMP, dGMP, AMP, dAMP, and 6- phosphogluconate. Is strictly specific to substrates with 5'- phosphates and shows no activity against nucleoside 2'- or 3'- monophosphates. Might be involved in the pyrimidine nucleotide substrate cycles
Gene Name:
yjjG
Uniprot ID:
P0A8Y1
Molecular weight:
25300.4
Reactions
A 5'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
General function:
Involved in hypoxanthine phosphoribosyltransferase activity
Specific function:
This enzyme acts exclusively on hypoxanthine; it does not act on guanine
Gene Name:
hpt
Uniprot ID:
P0A9M2
Molecular weight:
20115.0
Reactions
IMP + diphosphate = hypoxanthine + 5-phospho-alpha-D-ribose 1-diphosphate.
General function:
Involved in nucleoside metabolic process
Specific function:
Acts on guanine, xanthine and to a lesser extent hypoxanthine
Gene Name:
gpt
Uniprot ID:
P0A9M5
Molecular weight:
16970.5
Reactions
XMP + diphosphate = 5-phospho-alpha-D-ribose 1-diphosphate + xanthine.
General function:
Involved in catalytic activity
Specific function:
Inosine 5'-phosphate + NAD(+) + H(2)O = xanthosine 5'-phosphate + NADH
Gene Name:
guaB
Uniprot ID:
P0ADG7
Molecular weight:
52022.1
Reactions
Inosine 5'-phosphate + NAD(+) + H(2)O = xanthosine 5'-phosphate + NADH.
General function:
Involved in acid phosphatase activity
Specific function:
Dephosphorylates several organic phosphomonoesters and catalyzes the transfer of low-energy phosphate groups from phosphomonoesters to hydroxyl groups of various organic compounds. Preferentially acts on aryl phosphoesters. Might function as a broad-spectrum dephosphorylating enzyme able to scavenge both 3'- and 5'-nucleotides and also additional organic phosphomonoesters
Gene Name:
aphA
Uniprot ID:
P0AE22
Molecular weight:
26103.3
Reactions
A phosphate monoester + H(2)O = an alcohol + phosphate.
General function:
Involved in phosphotransferase activity, alcohol group as acceptor
Specific function:
ATP + inosine = ADP + IMP
Gene Name:
gsk
Uniprot ID:
P0AEW6
Molecular weight:
48448.4
Reactions
ATP + inosine = ADP + IMP.
General function:
Involved in nucleoside-triphosphate diphosphatase activity
Specific function:
Specific function unknown
Gene Name:
mazG
Uniprot ID:
P0AEY3
Molecular weight:
30412.0
Reactions
ATP + H(2)O = AMP + diphosphate.
General function:
Involved in IMP cyclohydrolase activity
Specific function:
10-formyltetrahydrofolate + 5-amino-1-(5- phospho-D-ribosyl)imidazole-4-carboxamide = tetrahydrofolate + 5- formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide
Gene Name:
purH
Uniprot ID:
P15639
Molecular weight:
57328.7
Reactions
10-formyltetrahydrofolate + 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide = tetrahydrofolate + 5-formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide.
IMP + H(2)O = 5-formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide.
General function:
Involved in hydrolase activity
Specific function:
Hydrolyzes O6 atom-containing purine bases deoxyinosine triphosphate (dITP) and xanthosine triphosphate (XTP) as well as 2'-deoxy-N-6-hydroxylaminopurine triposphate (dHAPTP) to nucleotide monophosphate and pyrophosphate. Probably excludes non- standard purines from DNA precursor pool, preventing thus incorporation into DNA and avoiding chromosomal lesions
Gene Name:
rdgB
Uniprot ID:
P52061
Molecular weight:
21038.6
Reactions
A nucleoside triphosphate + H(2)O = a nucleotide + diphosphate.
General function:
Involved in catalytic activity
Specific function:
Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides
Gene Name:
guaC
Uniprot ID:
P60560
Molecular weight:
37383.4
Reactions
Inosine 5'-phosphate + NH(3) + NADP(+) = guanosine 5'-phosphate + NADPH.
General function:
Involved in catalytic activity
Specific function:
Nucleotidase that shows strict specificity toward deoxyribonucleoside 5'-monophosphates and does not dephosphorylate 5'-ribonucleotides or ribonucleoside 3'-monophosphates. Might be involved in the regulation of all dNTP pools in E.coli
Gene Name:
yfbR
Uniprot ID:
P76491
Molecular weight:
22707.8
Reactions
A 5'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.

Transporters

General function:
Involved in transporter activity
Specific function:
Non-specific porin
Gene Name:
ompN
Uniprot ID:
P77747
Molecular weight:
41219.6
General function:
Involved in transporter activity
Specific function:
Uptake of inorganic phosphate, phosphorylated compounds, and some other negatively charged solutes
Gene Name:
phoE
Uniprot ID:
P02932
Molecular weight:
38921.7
General function:
Involved in transporter activity
Specific function:
OmpF is a porin that forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane. It is also a receptor for the bacteriophage T2
Gene Name:
ompF
Uniprot ID:
P02931
Molecular weight:
39333.1
General function:
Involved in transporter activity
Specific function:
Forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane
Gene Name:
ompC
Uniprot ID:
P06996
Molecular weight:
40367.9